On Jessen's inequality for convex functions
نویسندگان
چکیده
منابع مشابه
JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کاملAn inequality related to $eta$-convex functions (II)
Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملJensen’s Operator Inequality for Strongly Convex Functions
We give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve Hölder-McCarthy inequality under suitable conditions. More precisely we show that if Sp (A) ⊂ I ⊆ (1,∞), then 〈Ax, x〉 r ≤ 〈Ax, x〉 − r − r 2 (
متن کاملStolarsky Type Inequality for Sugeno Integrals on Fuzzy Convex Functions
Recently, Flores-Franulič et al. [A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 208 (2008) 55-59] proved the Stolarsky’s inequality for the Sugeno integral on the special class of continuous and strictly monotone functions. This result can be generalized to a general class of fuzzy convex functions in this paper. We also give a fuzzy integral inequal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1985
ISSN: 0022-247X
DOI: 10.1016/0022-247x(85)90315-4